SDSC6012 - Question of Assignment 2
发表于
|浏览量:
#assignment #sdsc6012
文章作者: Eric_Chen
版权声明: 本博客所有文章除特别声明外,均采用 CC BY-NC-SA 4.0 许可协议。转载请注明来源 迷麟の小站!
相关推荐
2025-09-28
SDSC6012 - Assignment 1
SDSC6012 - Assignment 1 #assignment #sdsc6012 Question 1 Trend Component Extraction (Moving Average Method) The trend component is extracted using the centered moving average method: Trendt=1k∑i=t−mt+mxi\text{Trend}_t = \frac{1}{k} \sum_{i=t-m}^{t+m} x_i Trendt=k1i=t−m∑t+mxi Where: kkk is the window size (here set to 12, corresponding to the annual cycle) m=⌊k/2⌋m = \lfloor k/2 \rfloorm=⌊k/2⌋ (half-window width for centered moving average) Boundary handling: when t<mt < mt&...
2025-10-18
SDSC6012 - Question of Assignment 1
#assignment #sdsc6012 Question 1 趋势成分提取(移动平均法) 趋势成分通过中心化移动平均法提取: Trendt=1k∑i=t−mt+mxi\text{Trend}_t = \frac{1}{k} \sum_{i=t-m}^{t+m} x_i Trendt=k1i=t−m∑t+mxi 其中: kkk 为窗口大小(此处取12,对应年度周期) m=⌊k/2⌋m = \lfloor k/2 \rfloorm=⌊k/2⌋(中心化移动平均的半窗宽) 边界处理:当t<mt < mt<m或t>n−mt > n-mt>n−m时,使用可用数据计算均值 季节性成分提取(周期平均法) 计算去趋势序列:dt=xt−Trendtd_t = x_t - \text{Trend}_tdt=xt−Trendt 对每个周期位置jjj(j=0,1,…,11j=0,1,\ldots,11j=0,1,…,11)计算平均值: sj=1Nj∑k=0Nj−1dj+12ks_j = \f...
2025-09-11
SDSC6012 Course 1-Introduction
#sdsc6012 English / 中文 Time Series Definition Core Concepts A time series is a sequence of data points indexed in chronological order. Application Areas: Economics: Daily stock prices, GDP, monthly unemployment rate Social Sciences: Population, birth rate, enrollment rate Epidemiology: Number of flu cases, mortality rate Medicine: Blood pressure monitoring, fMRI data Natural Sciences: Global temperature, monthly sunspot observations Supplementary Note: Time series are observational r...
2025-09-18
SDSC6012 Course 2-Stationarity and autoregressive models
#sdsc6012 English / 中文 Components and Decomposition of Time Series A time series typically consists of three components: Trend Component: Long-term direction of change Seasonal Component: Fluctuations with fixed periods Random Noise: Unexplained random fluctuations Using Python’s Matplotlib and NumPy libraries, one can generate and visualize the combined effects of these components. Key Statistics: Measuring Dependence Mean Function μt=E(xt)=∫−∞∞xft(x)dx\mu_t=E\left(x_t\right)=\int...
2025-09-18
SDSC6012 Course 3-Theory and Implementation
#sdsc6012 English / 中文 Fundamentals of Time Series Theory Definition and Properties of Time Series Time series is a sequence of random variables arranged in chronological order, denoted as {Xt:t∈T}\{X_t: t \in T\}{Xt:t∈T}, where TTT is the time index set. In practical applications, TTT is typically a discrete set (e.g., T={0,1,2,…}T = \{0, 1, 2, \ldots\}T={0,1,2,…}). Core Concept: Time series analysis aims to reveal internal dynamic dependencies within the sequence and build predictive mode...
2025-10-10
SDSC6012 Course 4-Autoregressive models
#sdsc6012 English / 中文 Stationarity Strict Stationarity A time series {xt}\{x_t\}{xt} is strictly stationary if and only if for any kkk, any time points t1,t2,…,tkt_1, t_2, \ldots, t_kt1,t2,…,tk, and any time shift hhh, we have: P{xt1≤c1,…,xtk≤ck}=P{xt1+h≤c1,…,xtk+h≤ck}P\{x_{t_1} \leq c_1, \ldots, x_{t_k} \leq c_k\} = P\{x_{t_1+h} \leq c_1, \ldots, x_{t_k+h} \leq c_k\} P{xt1≤c1,…,xtk≤ck}=P{xt1+h≤c1,…,xtk+h≤ck} Core Meaning: Strict stationarity implies that the complete probab...
